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We propose and theoretically investigate a two-photon four-wave mixing experiment to probe for Bose-
Einstein condensation of excitons in Cu2O thin films. A relatively simple set of equations describing the
dynamics of the system is obtained for a particular configuration of the three incident beams, and numerical
and approximate analytical solutions are found. When one takes into account the boundary conditions, which
result in reflections from the interfaces, the characteristics of the resulting phase-conjugated signal will exhibit
Fabry-Perot-type oscillations. For film thicknesses equal to a multiple of a half wavelength in the film the
resulting signal is enhanced by more than an order of magnitude relative thicknesses that are an odd multiple
of a quarter wavelength. In this case the contribution from accompanying excitonic condensates with wave
vectors �2k is minimal. Therefore, the resulting phase-conjugated signal vs the delay time between the pump
and probe pulses yields a direct measure of the time evolution only of the exciton condensate with wave vector
k=0.
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I. INTRODUCTION

Cuprous oxide has long been considered as a possible
candidate for Bose-Einstein condensation �BEC� due to the
relatively small mass and long lifetime of excitons in this
material.1–4 The lowest excited states are classified according
to the cubic symmetry of the lattice. The 1s exciton level is
split by the electron-hole exchange interaction into triply de-
generate 3�25

+ orthoexciton states, with a binding energy Eb
=150 meV, and a singlet 1�2

+ paraexciton state, with a bind-
ing energy Eb=162 meV. Due to their even parity, the
orthoexcitons states are only quadrupole active while the
paraexcitons are optically inactive in one photon-absorption
experiments; the latter can be populated from the orthoexci-
ton states by emitting optical phonons. For high-purity
samples the lifetime of the orthoexcitons is a few nanosec-
onds and mainly determined by the rate of conversion to
paraexcitons; for paraexcitons the lifetimes are much longer,
a few microseconds. BEC of paraexcitons was reported by
Lin and Wolfe5 but the interpretation remains uncertain. BEC
of the orthoexcitonic system has not been reported, possibly
due to orthopara conversion or exciton-exciton driven re-
combination restricting the achievable densities.6

Most experimental investigations have involved one-
photon absorption.7–10 Electron-hole pairs generated by this
process relax toward the 1s state of the lowest excitonic se-
ries. One decay mode of the 1s orthoexcitons involves the
creation of optical phonons. The relaxation of optically gen-
erated electron-hole pairs results in a temperature rise of the
exciton gas and the density of the orthoexcitons always satu-
rates below the critical density for BEC. Hence, BEC of the
orthoexcitons has not been realized by the one-photon exci-
tation.

Several studies on resonant two-photon excitation of 1s
excitons at low temperatures have been reported.11–16 The
interest was driven by the possibility of directly producing a
cooler high-density gas of nearly zero-momentum orthoexci-
tons.

We recently suggested17,18 using a two-photon process to
directly generate and then probe excitons in a 1s state with
wave vector k=0. To perform such experiments, one divides
the incoming laser pulse into three beams, 1, 2, and 3. Two
of the beams �1 and 3�, the pump beams, simultaneously
enter the sample from opposite directions. As a result, a mac-
roscopic coherent state of excitons with k=0 arises that we
may think of as a nonequilibrium condensate. Then, under
the action of a suitably delayed probe pulse �2� entering the
sample at some small angle relative to one of the pump
pulses, a phase-conjugated electromagnetic signal �4� arises
due to stimulated radiation from the previously generated
coherent exciton ensemble, which propagates in direction
opposite to the probe pulse. The time interval between the
probe pulse 2 and pump pulses 1 and 3 can be varied by
virtue of an optical delay line. Then, by measuring the inten-
sity of the resulting signal 4, one can monitor the exciton
condensate after its creation. Note that a thermal �incoherent�
distribution of orthoexcitons does not lead to macroscopic
coherent backscattering. Similar methods, generally termed
four-wave mixing,19–24 have proved to be powerful tools to
investigate coherent excitations in various systems, along
with the scattering processes which destroy this coherence
�see, e.g., Refs. 25–38�.

Our earlier work18 showed that the total number of pho-
tons generated in the course of the experiment was propor-
tional to the areas of all three incoming pulses. The depen-
dence of the resulting time-integrated signal on the delay
time td is the same as the exciton density dependence on the
time t. Hence, one may directly study the time evolution of
the exciton condensate. It was also noted that an exciton
condensate arising by an alternate route can also be probed
through a phase-conjugated two-photon process.

Only the simpler problem involving the time evolution of
coherent excitons and photons under the internal electromag-
netic fields was considered in our previous study; photon
lifetimes were treated phenomenologically by introducing a
decay constant �ph �which is inversely proportional to the
photon time of flight through the sample�. The reflection/
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transmission at the sample boundaries was not taken into
account; i.e., the relation between the internal fields and
those incidents on the crystal was not obtained and growth of
the condensate due to the presence of reflected electromag-
netic waves was not taken into account. In particular, how
the intensity of the resulting four-wave mixing signal de-
pends on the sample thickness was left as an open question.

In the present paper we discuss four-wave mixing in a
crystal of finite thickness, a thin Cu2O film or platelet; in
addition, we will assume that the thickness is considerably
less than the spatial extension of laser pulses incident on the
film. The pump pulses 1 and 3 are assumed to arrive simul-
taneously from opposite sides and normal to its surface; the
probe pulse makes a small angle with one of the pump
pulses.

For the case of a sample with a finite thickness additional
phenomena occur: �1� Only part of the amplitude of the in-
cident pulses enters the film; the remaining part being re-
flected. �2� The parts inside the film undergo multiple reflec-
tions which interfere with each other. The excitonic
condensate with wave vector k=0 is generated by those
combinations of forward and backward waves having or-
thogonal polarizations. �3� Primary and reflected waves
propagating in the same direction produce additional conden-
sate amplitudes with wave vectors 2k �forward� and −2k
�backward�. �4� The additional condensates can act back on
the electromagnetic fields that excite them and in this way
influence the dynamics of the condensate with wave vector
k=0. �5� For small incident angles �, the probe pulse and
the resulting four-wave mixing signal also undergo multiple
reflections from the film boundaries which interact with the
region where the excitons produced by the pump beams re-
side. In this case the resulting four-wave mixing signal is
formed not only by emission from the condensate at k=0 but
also by emission from an additional condensates with wave
vectors �2k. Consequently, the resulting four-wave mixing
signal involves the dynamics of the excitonic system as a
whole; i.e., all components contribute.

The last circumstance calls in question whether the main
result of Ref. 18 is valid; i.e., that the study of the depen-
dence of the time-integrated four-wave mixing signal on the
delay time between the probe and pump pulses allows moni-
toring the dynamics of the excitonic condensate with wave
vector k=0.

In the present paper we will show that, for a wide-range
experimental conditions, accounting for the finite dimensions
of the crystal reduces to incorporating a geometrical factor in
the result obtained in Ref. 18. We determine the conditions
for which the contribution of the �2k condensates is mini-
mal and the resulting signal reaches its maximum value. We
will also discuss how to experimentally separate the time-
integrated resulting signal from the pump and probe pulses
generating the condensates.

We start from a set of equations for the macroscopic am-
plitude of the excitonic density and the electromagnetic field
strength supplemented by the Maxwell-Fresnel conditions
for the tangential components of electrical and magnetic
fields at the film-vacuum boundaries. These equations follow
from the model Hamiltonian taking into account the selec-
tion rules for two-photon transitions in Cu2O. We use the

same physical assumptions related to the intensity and dura-
tion of incoming pulses as in Ref. 18.

This paper is organized as follows. In Sec. II a closed set
of nonlinear differential equations is found for the slowly
changing macroscopic amplitudes of excitonic and electro-
magnetic waves inside the film that satisfy the boundary con-
ditions corresponding to a particular configuration of electro-
magnetic pulses incident on the film. In Sec. III, the set of
equations is simplified using some approximations that cor-
respond to the adopted physical assumptions. In Sec. IV we
provide the analytical solution of a simplified set of equa-
tions and discuss the physical results. Our conclusions are
given in Sec. V.

II. BASIC EQUATIONS

We start from the set of macroscopic equations for the
positive-frequency components of the electromagnetic field
strength E�+��r , t� �with polarization �=1,2� and exciton am-
plitudes ��

�+��r , t� �with �=xy ,yz ,zx�

�i	
�

�t
− 	
ex�0� +

	2

2mex
� + i	�ex��ij

�+� = − GEi
�+�Ej

�+� �i, j

= x,y,z� ,

�� −
�b

c2

�2

�t2�E�+� =
4

c2

�2

�t2P�+�, �1�

where

Px
�+� = G�Ez

�−��zx
�+� + �xy

�+�Ey
�−�� ,

Py
�+� = G�Ex

�−��xy
�+� + �yz

�+�Ez
�−�� ,

Pz
�+� = G�Ey

�−��yz
�+� + �zx

�+�Ex
�−�� ,

Ei
�−� = Ei

�+��, �i = x,y,z� �2�

with 	
ex�0� and �ex the energy of formation and the phe-
nomenological decay constant of excitons, mex the exciton
effective mass, �b the background dielectric constant of the
medium, c the speed of light in vacuum, and G the interac-
tion constant. The set of Eqs. �1� and �2� is analogous to the
well-known Keldysh equations39 for the macroscopic ampli-
tudes of interacting coherent excitons and photons, which
can easily be obtained from the Hamiltonian

H = Hex + Hph + Hint,

Hex = �
k

	
ex�k� �
�=xy,yz,zx

â�
†�k�â��k� ,

Hph = �
k

	
ph�k� �
�=1,2

ĉ�
†�k�ĉ��k� ,

Hint =
1

2!�V
�

k1,k2

�
�=xy,yz,zx

�
�1,�2=1,2

g�
��1,�2��k1,k2��â�

†�k1

+ k2�ĉ�1
�k1�ĉ�2

�k2� + H.c.� ,

where 	
ex�k�=	
ex�0�+	2k2 /2mex and 	
ph�k�
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=	c	k	 /��b are the energies of the excitons and photons in a
state with wave vector k while â�

†�k� and ĉ�
†�k� are the cre-

ation operators of excitons ��=xy ,yz ,zx� and photons ��
=1,2� with â��k�, ĉ��k� are corresponding annihilation op-
erators, which collectively satisfy the Bose commutation re-
lationships. The constant G= ��b /Eg�g, where Eg is the
semiconductor energy gap. The interaction constants
g�

��1,�2��k1 ,k2� are proportional to matrix elements of the
two-photon transitions calculated in second-order perturba-
tion theory.40 Using the selection rules for these transitions,41

we can write these constants in the form

gxy
��1,�2��k1,k2� = ex

��1��k1�ey
��2��k2� + ey

��1��k1�ex
��2��k2� ,

gyz
��1,�2��k1,k2� = ey

��1��k1�ez
��2��k2� + ez

��1��k1�ey
��2��k2� ,

gzx
��1,�2��k1,k2� = ez

��1��k1�ex
��2��k2� + ex

��1��k1�ez
��2��k2� ,

where e�1��k� and e�2��k� are the two linearly independent
polarization vectors of the electromagnetic field with wave
vector k; they satisfy the condition e�1��k��e�1��k�=k / 	k	.

We will consider a configuration of incident electromag-
netic fields 1, 2, and 3 for which Eqs. �1� and �2� acquire the
simplest form.17 Namely, we choose its wave vectors k1

�0�,
k2

�0�, and k3
�0� to have the form k3

�0�=−k1
�0�= �
0 /c�ŷ, k2

�0�

= �
0 /c��x̂ sin �+ ŷ cos ��, and the polarizations as e1=e2
= ẑ, and e3= x̂; here x̂ , ŷ , ẑ the unit vectors defining the Car-
tesian coordinate system. Then the resulting four-wave mix-
ing electromagnetic signal will have wave vector k4

�0�=
−k2

�0� and polarization vector e4= x̂ cos �− ŷ sin �. Further-
more we will only discuss the case of very small values of
the angle �, i.e., sin ��1 and cos �
1. Here k4

�0�=−k2
�0�


−�
0 /c�ŷ, e4= x̂.
We assume that the pump pulses 1, 3, and the probe pulse

2 are separated by a time interval td� tp, where tp is the
duration of the pump and probe pulses. In this case, owing to
the action of the pump pulses 1 and 3 on the system, only zx
excitons are created; exciton creation from the 2,3 or 1,4
combinations is forbidden.

According to the chosen configuration of the incident
fields and the aforementioned assumptions, we will search
the solution of Eqs. �1� and �2� within the film in the form

Ex
�+��r,t� = E3

�+��y,t� + E4
�+��y,t� ,

Ez
�+��r,t� = E1

�+��y,t� + E2
�+��y,t� ,

E1,4
�+��y,t� = e−i
0t�E1,4

�f� �y,t�e−ik�y−L� + E1,4
�b��y,t�eiky� ,

E2,3
�+��y,t� = e−i
0t�E2,3

�f� �y,t�eiky + E2,3
�b��y,t�e−ik�y−L�� ,

�zx
�+��y,t� = e−2i
0t���0��y,t�eikL + ��f��y,t�e2iky + ��b�

��y,t�e−2ik�y−L�� ,

where k=��b
0 /c. Taking into account that the functions 1,
eiky, and e−iky are linearly independent and neglecting the
nonresonant terms of the form e�3iky on the right-hand side
of the second equation in Eq. �1�, we obtain the equations for
amplitudes Ei

�f ,b��y , t� �i=1,2 ,3 ,4� and ��0,f ,b��y , t�, which in
the approximation of slowly changing envelopes42,43 have
the following form:

� �

�t
�

c
��b

�

�y
��E1

�b,f��y,t�
E4

�b,f��y,t�
� =

ig

	
���0��y,t��E3

�b,f���y,t�
E2

�b,f���y,t�
�

+ ��f ,b��y,t��E3
�f ,b���y,t�

E2
�f ,b���y,t�

�� ,

� �

�t
�

c
��b

�

�y
��E3

�f ,b��y,t�
E2

�f ,b��y,t�
� =

ig

	
���0��y,t��E1

�f ,b���y,t�
E4

�f ,b���y,t�
�

+ ��f ,b��y,t��E1
�b,f���y,t�

E4
�b,f���y,t�

�� ,

�3�

 �

�t
+ ��ex + i��0�����0��y,t� =

iG

	
�E1

�f��y,t�E3
�f��y,t� + E2

�f�

��y,t�E4
�f��y,t� + E1

�b�

��y,t�E3
�b��y,t� + E2

�b�

��y,t�E4
�b��y,t�� ,

 �

�t
+ ��ex + i��2k�� �

	k

mex

�

�y
���f ,b��y,t� =

iG

	
�E1

�b,f�

��y,t�E3
�f ,b��y,t� + E2

�f ,b��y,t�E4
�b,f��y,t�� . �4�

where ��k�=
ex�k�−2
0 is the detuning from the two-
photon resonance. As a further simplification of Eqs. �3� and
�4� we note that when the film thickness is small we can
expand the functions Ei

�f ,b��y , t� and ��0,f ,b��y , t� in the vari-
able y, retaining only zeroth-order and first-order terms:
f�y�
 f�0�+ �f�L�− f�0��y /L. Again noting that the functions
1 and y are linearly independent, we obtain

�

�t
�E1

�f��0,t�
E4

�f��0,t�
� = − �ph��E1

�f��0,t�
E4

�f��0,t�
� − �E1

�f��L,t�
E4

�f��L,t�
�� +

ig

	
���0��0,t��E3

�f���0,t�
E2

�f���0,t�
� + ��b��0,t��E3

�b���0,t�
E2

�b���0,t�
�� ,

�

�t
�E1

�b��L,t�
E4

�b��L,t�
� = − �ph��E1

�b��L,t�
E4

�b��L,t�
� − �E1

�b��0,t�
E4

�b��0,t�
�� +

ig

	
���0��L,t��E3

�b���L,t�
E2

�b���L,t�
� + ��f��L,t��E3

�f���L,t�
E2

�f���L,t�
�� ,
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�

�t
�E3

�f��L,t�
E2

�f��L,t�
� = − �ph��E3

�f��L,t�
E2

�f��L,t�
� − �E3

�f��0,t�
E2

�f��0,t�
�� +

ig

	
���0��L,t��E1

�f���L,t�
E4

�f���L,t�
� + ��f��L,t��E1

�b���L,t�
E4

�b���L,t�
�� ,

�

�t
�E3

�b��0,t�
E2

�b��0,t�
� = − �ph��E3

�b��0,t�
E2

�b��0,t�
� − �E3

�b��L,t�
E2

�b��L,t�
�� +

ig

	
���0��0,t��E1

�b���0,t�
E4

�b���0,t�
� + ��b��0,t��E1

�f���0,t�
E4

�f���0,t�
�� , �5�

 �

�t
+ ��ex + i��0�����0��L,t� =

iG

	
�E1

�f��L,t�E3
�f��L,t� + E2

�f��L,t�E4
�f��L,t� + E1

�b��L,t�E3
�b��L,t� + E2

�b��L,t�E4
�b��L,t�� ,

 �

�t
+ ��ex + i��0�����0��0,t� =

iG

	
�E1

�f��0,t�E3
�f��0,t� + E2

�f��0,t�E4
�f��0,t� + E1

�b��0,t�E3
�b��0,t� + E2

�b��0,t�E4
�b��0,t�� ,

 �

�t
+ ��ex + i��2k�����f��L,t� =

iG

	
�E1

�b��L,t�E3
�f��L,t� + E2

�f��L,t�E4
�b��L,t�� ,

 �

�t
+ ��ex + i��2k�����b��0,t� =

iG

	
�E1

�f��0,t�E3
�b��0,t� + E2

�b��0,t�E4
�f��0,t�� . �6�

Here �ph is the inverse flight time of the photon through
the film, �ph= tf

−1 and tf =��bL /c. In the last two of
Eqs. �6� we have omitted the terms �

	k
mexL

���f ,b��L , t�
−��f ,b��0, t��, which can be transformed to the form
��ph�b�	
0 /mexc

2����f ,b��L , t�−��f ,b��0, t��. Since the ratio
	
0 /mexc

2 is small, we can neglect these terms, even for
very thin films.

In addition to Eqs. �5� and �6� we have the Maxwell-
Fresnel boundary conditions for the tangential components
of electric and magnetic fields at the film-vacuum boundary.
Assuming that outside the film

Ex
�+��r,t� = E3,in

�+� �y,t� + E3,r
�+��y,t� + E4−w

�+� �y,t�, Ez
�+��r,t� = E1,t

�+�

��y,t� + E2,in
�+� �y,t� + E2,r

�+��y,t� ,

E3,in
�+� �y,t� = e−i
0t+ik0yE3

�in��y,t� ,

E3,r
�+��y,t� = e−i
0t−ik0yE3,r�y,t� ,

E4−w
�+� �y,t� = e−i
0t−ik0yE4−w�y,t� ,

E1,t
�+��y,t� = e−i
0t+ik0yE1,t�y,t� ,

E2,in
�+� �y,t� = e−i
0t+ik0yE2

�in��y,t� ,

E2,r
�+��y,t� = e−i
0t−ik0yE2,r�y,t� ,

for y�0 and

Ex
�+��r,t� = E3,t

�+��y,t� + Ẽ4−w
�+� �y,t�,

Ez
�+��r,t� = E1,in

�+� �y,t� + E1,r
�+��y,t� + E2,t

�+��y,t� ,

E3,t
�+��y,t� = e−i
0t+ik0�y−L�E3,t

�in��y,t� ,

Ẽ4−w
�+� �y,t� = e−i
0t+ik0�y−L�Ẽ4−w�y,t� ,

E1,in
�+� �y,t� = e−i
0t−ik0�y−L�E1

�in��y,t� ,

E1,r
�+��y,t� = e−i
0t+ik0�y−L�E1.r�y,t� ,

E2,t
�+��y,t� = e−i
0t+ik0�y−L�E2,t�y,t� ,

for y�L, we obtain

E1
�f��L,t� = �E1

�b��L,t� + �E1
�in��L,t� ,

E1
�b��0,t� = �E1

�f��0,t� ,

E2,3
�f� �0,t� = �E2,3

�b��0,t� + �E2,3
�in��0,t� ,

E2,3
�b��L,t� = �E2,3

�f� �L,t� ,

E4
�f��L,t� = �E4

�b��L,t� ,

E4
�b��0,t� = �E4

�f��0,t� , �7�

E4−w
�f� �0,t� = ��eikLE4

�f��0,t� , �8�

where k0=
0 /c and

� = �̃eikL, �̃ =
��b − 1
��b + 1

,

� =
2

��b + 1
, �� =

2��b

��b + 1
.

Substituting Eq. �7� into Eqs. �5� and �6�, we find a closed set
of nonlinear differential equations given in Appendix as Eqs.
�A1�–�A12� for functions E1,4

�f� �0, t�, E1,4
�b��L , t�, E2,3

�f� �L , t�, and
E2,3

�b��0, t�, and ��0��L , t�, ��0��0, t�, ��f��L , t�, and ��b��0, t�.
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III. THIN FILMS AND THE EXTERNAL-FIELD
APPROXIMATIONS

The complete set of nonlinear equations, taking into ac-
count the reaction of the excitons on the electromagnetic
waves that generate them, can only be solved using numeri-
cal methods. Hence, it is desirable to obtain simpler equa-
tions, which can be solved analytically, but do not supply as
detailed a description of the temporal evolution of the sys-
tem. This allows a deeper insight into the physics of the
processes which occur in the system.

We consider the set of Eqs. �5�–�7� for bell-shaped inci-
dent pulses with a maximum at t= t0. We assume that the
pulse duration tp satisfies the following inequalities:

�ph
−1 � tp � �ex

−1 �9�

and the time t0 is chosen so that 0� tp� t0. The first inequal-
ity implies that the pulse width tp is much greater than the
time of flight ��bL /c, in which case the spatial extent of the
pulse ctp /��b greatly exceeds the sample thickness L. The
second inequality in Eq. �9� facilitates probing the exciton
condensate as a function of time and in this way monitoring
its temporal evolution.

Taking into account the first of inequalities in Eq. �9�, we
can neglect the derivatives of the functions E1,4

�f� �0, t�,
E1,4

�b��L , t�, E2,3
�f� �L , t�, and E2,3

�b��0, t� on the left-hand sides of
Eqs. �A1�–�A8�. As a result, we obtain algebraic equations
that allow us to express E1,4

�f� �0, t�, E1,4
�b��L , t�, E2,3

�f� �L , t�, and
E2,3

�b��0, t� via the amplitudes ��0��L , t�, ��0��0, t�, ��f��L , t�,
and ��b��0, t�. Substituting the resulting expressions into Eqs.
�A9�–�A12�, we find equations that define the temporal evo-
lution of excitonic condensates.

The procedure can be further simplified by suppressing
the reaction of generated excitons on the incident laser
pulses. In this case the amplitudes Ei

�f ,b� �i=1,2 ,3 ,4�
will depend only on the background dielectric constant of the
film �b and on its thickness L. In fact, if we omit the time
derivatives in Eqs. �A1�–�A8� and neglect the second of the
terms on the right-hand side, we find Ei

�f ,b��L , t�=Ei
�f ,b��0, t�

�i=1,2 ,3 ,4�. Assuming E1
�in��L , t�=E2,3

�in��0, t�=E�in��t�
=E�in��t0�f�t�, we obtain that in the zero-order approximation
the known result44

Ei
�f ,b��L,t� = �E�in��t0�Fi

�f ,b��L,t� , �10�

where i=1,2 ,3 ,4

F1
�b��L,t� = F3

�b��0,t� =
�f�t�
1 − �2 ,

F1
�f��0,t� = F3

�f��L,t� =
f�t�

1 − �2 ,

F2
�b��0,t� =

�f�t − td�
1 − �2 ,

F2
�f��L,t� =

f�t − td�
1 − �2 ,

F4
�f ,b��L,t� = F4

�f ,b��0,t� = 0. �11�

Substituting Eqs. �10� and �11� into Eqs. �A1�–�A8� and as-
suming that ��2k�
��0�, since the ratio 	
0 /mexc

2 is small,
we obtain

��0��L,t� = ��0��0,t� =
��

�1 − �2�2��t���bE�in�2�t0�/2

	
0
,

��f��L,t� = ��b��0,t� =
��1 + �2�
�1 − �2�2 ��t���bE�in�2�t0�/2

	
0
,

�12�

where function ��t� satisfies the equation

� �

� t̄
+ �1 + i�̄����t̄� = i�f2�t̄� , �13�

where

t̄ = �ext, �̄ = ��0�/�ex,

� =
g

	�ex

��bE�in�2�t0�/2

	
0
.

IV. DISCUSSION AND MAIN RESULTS

The approximate solution of Eq. �13� for the resonant case
tp��0��1 and Gaussian incident pulses with a maximum t
= t0 �tp� t0�

f�t̄� = exp�− 2
�t̄ − t̄0�2

t̄p
2 �

was obtained in Ref. 18 in the form

��t̄� 
 − i���t̄�exp�− �1 + i�̄��t̄ − t̄0�� ,

where

FIG. 1. The thick curve describes the dependence r��� in the
interval �0,� while the thin curve describes its expansion in a
series in the parameter �̃ with the accuracy to terms of the order of
�̃6. The curve in the inset describes the dependence r1��� in the
interval �0,�.
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��t̄� =
�t̄p

4 erf�2
t̄0

t̄p
� + erf�2

�t̄ − t̄0�

t̄p
�� 


�t̄p

4 1 + erf�2
�t̄ − t̄0�

t̄p
�� .

We now account for the stimulated radiation, and the resulting four-wave mixing signal 4, arising from the pump pulses 1,
3 and the probe pulse 2. Substituting Eq. �12� into Eqs. �A7� and �A8�, and neglecting the time derivatives, we obtain

� F4
�f��0, t̄� − �F4

�b��L, t̄� =
i�

�̄ph

1 + 	�	2 + �2

�1 − �2�2�1 − ��2�
��t̄�f�t̄ − t̄d�

− �F4
�f��0, t̄� + F4

�b��L, t̄� =
i�

�̄ph

���1 + �2 + �2/	�	2�
�1 − �2�2�1 − ��2�

��t̄�f�t̄ − t̄d� ,� �14�

where �̄ph=�ph /�ex.
It follows from Eq. �14� that

F4
�f��0, t̄� =

i�

�̄ph

�1 + 2	�	2� + �2�2 + 	�	2�
�1 − �2�2	1 − �2	2

��t̄�f�t̄ − t̄d�

and using the second of inequalities in Eq. �9�

F4
�f��0, t̄� 


i�

�̄ph

�1 + 2	�	2� + �2�2 + 	�	2�
�1 − �2�2	1 − �2	2

��t̄0 + t̄d�f�t̄ − t̄d� .

Taking into account Eq. �8�, we find that the flux density of
the resulting four-wave mixing signal S4−w�t�
=cE4−w

2 �0, t� /2 is proportional to the flux density of the
probe pulse Sin�t�=cE�in�2�t0� /2

S4−w�t� = �����2r�kL�
�2

�̄ph
2 	��t0 + td�	2Sin�t� , �15�

where

r�kL� =
�1 + �̃2�2

�1 − �̃2�6

1 +
�1 + 2�̃2��2 + �̃2�

�1 + �̃2�2 � 2�̃

1 − �̃2�2

cos2 kL

�1 + � 2�̃

1 − �̃2�2

sin 2kL�4 .

�16�

The factor �����2 in Eq. �15� appears since the strength of the
electric component of the incident probe pulse 2 changes its
value at the crystal interface from E�in� to �E�in�; and vice
versa, the strength of the electric component of the resulting
electromagnetic signal 4 leaving the crystal changes its value
from E4−w to ��E4−w. For Cu2O we have �����2
0.655. The
“geometrical factor” r�kL� takes into account the multiple
internal reflections of pulses 1–4 from the crystal/vacuum

interfaces. Assuming Ẽ�in��t�=�E�in��0, t� and E4−w�0, t�
=��Ẽ4−w�t� in Eq. �15�, we find for �̃=0 �r�kL��1� that

S4−w�t� =
�2

�̄ph
2 	��t0 + td�	2S̃�t� ,

where S̃�t�= �c /��b���bẼ2�t� /2� is the flux density inside
the crystal; i.e., we come to the result of Ref. 18, where only
the interaction of excitons with the direct waves inside the
crystal was studied. Our description allows one to associate

these waves with the waves outside the crystal, the incident
waves 1–3 and outgoing wave 4.

According to Eq. �15�, S4−w�L2r�kL�. The function r���
is periodic with period . Figure 1 shows this function in the
interval �0,�. As can be seen from the figure, the intensity
of the resulting signal depends significantly on the film thick-
ness; for L= �� /2�n �n=1,2 ,3 , . . .� it exceeds the intensity
predicted in Ref. 18 by a factor of 17.7 while for L
= �� /4�n it is smaller by a factor of 4.5, where �
=2c /
0

��b is the wavelength of laser radiation in the film.
In particular, the condition L= �� /2� is satisfied for a film
with a thickness of L=2.391�10−5 cm.

Thus, for L= �� /2�n �n=1,2 ,3 , . . .� the resulting signal is
larger than the case when L= �� /4�n �n=1,3 ,5 , . . .�, by a
factor of 77 for Cu2O.45 This is easily understood since L
= �� /2�n �n=1,2 ,3 , . . .� is the condition for maximum trans-
mission through the Fabry-Perot cavity formed by reflection
from the interfaces, which simultaneously involves the larg-
est amplitude inside the crystal. Obviously, the larger parts of
the incident pulses enter inside the film, the larger quantity of
excitons are generated in it; therefore, the larger value of the
resulting signal should be expected. However, note that the
resulting signal is not a simple multiplication of the intensi-
ties of the incident pulses �see Eqs. �15� and �16��.

The time evolution of the excitonic condensate with wave
vector k=0 is of primary interest. The ratio

	��f ,b�	2

	��0�	2
= r1�kL� �17�

of the number of excitons with wave vector �2k to the
number of excitons with wave vector k=0 is defined by the
relationship

r1�kL� =
1

4

� 2�̃

1 − �̃2�2

1 + � 2�̃

1 − �̃2�2

cos2 kL

and it is a periodic function of the variable kL with the period
. This function in the interval �0,� is shown in the inset of
Fig. 1. As can be seen in the figure, the ratio in Eq. �17� is
minimal and amounts to 0.13 for L= �� /2�n �n=1,2 ,3 , . . .�,
i.e., for those film thicknesses for which the resulting elec-
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tromagnetic signal 4 attains its maximal value. This non-
trivial result tells us that the four-wave mixing signal is a
direct measure of the temporal dynamics of the condensate
with wave vector k=0, which is of primary interest for us.

From Fig. 2 we see that the maximal values of the flux
density of the resulting signal occurs at the same film thick-
nesses L= �� /2�n for which the exciton density is maximal.
In particular, the maxima in Fig. 2 correspond to the values
n=51,52,53. Both the exciton density and the phase conju-
gated signal 4 increase when L increases.

The numerical solution of the complete set of nonlinear
differential Eqs. �A1�–�A12� for the functions E1,4

�f� �0, t�,
E1,4

�b��L , t�, E2,3
�f� �L , t�, and E2,3

�b��0, t�, and ��0��L , t�, ��0��0, t�,
��f��L , t�, and ��b��0, t� in the presence of an incident flux
S= �1 /100� MW /cm2 leads to results that accurately coin-
cide with the analytical results obtained above by virtue of
various approximations.

We note that real laser beams have a �typically Gaussian�
spatial distribution of the electromagnetic field intensity in
the plane perpendicular to the propagation direction. As an
approximation we will assume that the pump beams �1 and
3� generate excitons in a cylinder with its diameter d and
height L inside the film. The probe �2� and resulting �4�

beams can leave this region after they have undergone only a
finite number of reflections N�d /2L tan � from the internal
crystal boundaries. In the absence multiple reflections of the
probe 2 and resulting 4 beams inside the active, exciton-
filled, region, the geometrical factor is given by

r��kL� =
1

�1 − �̃2�2

1 + � 2�̃

1 − �̃2�2

cos2 kL

�1 + � 2�̃

1 − �̃2�2

sin2 kL�2 ,

which results in only a tenfold enhancement of the resulting
signal for L= �� /2�n �n=1,2 ,3 , . . .� in comparison with the
case when L= �� /4�n �n=1,3 ,5 , . . .�. Equation �16� was ob-
tained with the assumption that the beams 2 and 4 undergo
an infinite number of reflections. If we expand the expression
�16� in a series in the parameter �̃ then each term of the
expansion corresponds to one reflection from the internal
boundaries. It is easy to show that it is sufficient to take into
account only the first six terms of the series to obtain a result
close to the exact Eq. �16� �see Fig. 1�. Hence, the Eq. �16�
also remains valid for a finite transverse distribution of the
beams when N�6.

The smaller the film thickness and the angle of incidence
of the probe beam, the larger is the number of reflections of
the beam from the film boundaries and with it the resulting
signal. However, for small angles �, or for the limiting case
of a normal incidence of the probe pulse 2 ��=0�, the four-
wave mixing signal 4 copropagates with transmitted or re-
flected pulses arising from pulses 1, 2, and 3. However pump
pulses 1 and 3 precede the probe pulse 2, and since td� tp the
resulting signal 4 and the part of the pulse 2 reflected from
the film surface are cross polarized and therefore can be
separated using a polarizer.

On the other hand, the resulting four-wave mixing signal
is weak since the interaction constant for the two-photon
generation of excitons is small so it may be difficult to ob-
serve experimentally. But one can also study the time-
integrated signal, the value of which can be increased as a
result of multiple repetitions of the experiment over time
intervals spaced by a time t�1 /�ex. According to Ref. 18,
the dependence of the time-integrated signal on the delay
time td for td� tp follows the dependence of the exciton con-
densate density on the time t. While studying the time-
integrated signal for extremely small angles �, it is quite
difficult to select the emissions from various pulses using a
finite delay time between the pump and probe pulses. How-
ever, note that the polarization and direction of propagation
of the resulting signal coincide with those only for the part of
the pump pulse 3 reflected from the film. For the optimal
experimental conditions, when L= �� /2�n �n=1,2 ,3 , . . .�, a
complete transmission of the three incident pulses 1, 2, and 3
occurs; this means, that all three pulses pass through the film
without reflection. Therefore, in this case only the resulting
signal 4 and the pump pulse 1 passed through the film with-
out reflection will propagate in the direction −ŷ to the left
from the film �for y�0�. These pulses are cross polarized
and it is easy to separate them.

FIG. 2. Dependencies of �a� 	F4
�f��0, t̄�	2 and �b� 	��0��L , t̄�	2 ver-

sus t̄ and L for �b=6.5, 	�ex=1 �eV, t̄p=0.016, t̄d=0.16, t̄0=1, and
for the flux density of pulses incident on the crystal S
=1 MW /cm2.
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V. CONCLUSIONS

In the presence of crystal boundaries, four-wave mixing
results in the four direct electromagnetic waves, a train of
reflected waves, and additional waves of excitonic polariza-
tion. Owing to the interference of these waves and their in-
teraction, a nonmonotonic dependence of the resulting four-
wave mixing signal on the film thickness occurs.
Thicknesses that are a multiple of a half wavelength of the
laser radiation in the film, implying a spatial resonance, pro-
duce the largest response. The presence of a complex wave
interference does not change the central result of Ref. 18: the
dependence of the resulting time-integrated electromagnetic
signal as a function of the time delay between the pump and
the probe pulses exhibits the same behavior as the exciton
condensate density.
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APPENDIX: FULL SET OF EQUATIONS FOR THE
MACROSCOPIC AMPLITUDES OF ELECTROMAGNETIC

AND EXCITONIC WAVES

After the approximation of slowly changing envelopes
and the thin-film approximation were used the basic set of
equations has the following form:

�

�t
E3

�f��L,t� = − �ph�E3
�f��L,t� − �E3

�b��0,t� − �E3
�in��0,t��

+
ig

	
���0��L,t���E1

�b��L,t� + �E1
�in��L,t��� + ��f�

��L,t�E1
�b���L,t�� , �A1�

�

�t
E3

�b��0,t� = − �ph�E3
�b��0,t� − �E3

�f��L,t�� +
ig

	
���0��0,t���E1

�f�

��0,t��� + ��b��0,t�E1
�f���0,t�� , �A2�

�

�t
E1

�b��L,t� = − �ph�E1
�b��L,t� − �E1

�f��0,t�� +
ig

	
���0��L,t���E3

�f�

��L,t��� + ��f��L,t�E3
�f���L,t�� , �A3�

�

�t
E1

�f��0,t� = − �ph�E1
�f��0,t� − �E1

�b��L,t� − �E1
�in��L,t��

+
ig

	
���0��0,t���E3

�b��0,t� + �E3
�in��0,t��� + ��b�

��0,t�E3
�b���0,t�� , �A4�

�

�t
E2

�f��L,t� = − �ph�E2
�f��L,t� − �E2

�b��0,t� − �E2
�in��0,t − td��

+
ig

	
���0��L,t���E4

�b��L,t��� + ��f�

��L,t�E4
�b���L,t�� , �A5�

�

�t
E2

�b��0,t� = − �ph�E2
�b��0,t� − �E2

�f��L,t�� +
ig

	
���0��0,t���E4

�f�

��0,t��� + ��b��0,t�E4
�f���0,t�� , �A6�

�

�t
E4

�b��L,t� = − �ph�E4
�b��L,t� − �E4

�f��0,t�� +
ig

	
���0��L,t���E2

�f�

��L,t��� + ��f��L,t�E2
�f���L,t�� , �A7�

�

�t
E4

�f��0,t� = − �ph�E4
�f��0,t� − �E4

�b��L,t�� +
ig

	
���0��0,t���E2

�b�

��0,t� + �E2
�in��0,t − td��� + ��b��0,t�E2

�b���0,t�� ,

�A8�

 �

�t
+ ��ex + i��2k�����f��L,t� =

iG

	
�E1

�b��L,t�E3
�f��L,t� + E2

�f�

��L,t�E4
�b��L,t�� , �A9�

 �

�t
+ ��ex + i��2k�����b��0,t� =

iG

	
�E1

�f��0,t�E3
�b��0,t� + E2

�b�

��0,t�E4
�f��0,t�� , �A10�

 �

�t
+ ��ex + i��0�����0��L,t� =

iG

	
���E1

�b��L,t� + �E1
�in�

��L,t��E3
�f��L,t� + E1

�b��L,t�

���E3
�f��L,t�� + E2

�f��L,t�

���E4
�b��L,t�� + ��E2

�f�

��L,t��E4
�b��L,t�� , �A11�

 �

�t
+ ��ex + i��0�����0��0,t� =

iG

	
�E1

�f��0,t���E3
�b��0,t�

+ �E3
�in��0,t�� + ��E1

�f�

��0,t��E3
�b��0,t� + ��E2

�b�

��0,t� + �E2
�in��0,t − td��E4

�f�

��0,t� + E2
�b��0,t���E4

�f�

��0,t��� . �A12�
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